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LEITER TO THE EDITOR 

Diffusion on a one-dimensional lattice with random 
asymmetric transition rates 

J Bernasconi and W R Schneider 
Brown Boveri Research Center, CH-5405 Baden, Switzerland 

Received 3 1 August 1982 

Abstract. We study one-dimensional continuous-time random walks for which the pairs 
{ W:, W,,, } of nearest-neighbour transition rates are assumed to be independent, equally 
distributed random variables. The longtime asymptotic behaviour of the mean displace- 
ment, ( ~ ( t ) ) ,  is determined exactly for a specific model system in which ‘diodes’ {U, 0) and 
‘two-way bonds’ {Au, U }  occur with probabilities p and 1 - p ,  respectively. For A 1 - p ,  
we find that ( x ( t ) )  - t”F(p-’ In I ) ,  where Y = In(1 -p)/ln A and p = -In A, and where F is 
a periodic function with period 1. The mean displacement thus not only increases slower 
than linearly in time, but exhibits superimposed, non-decaying oscillations. 

Diffusion on a one-dimensional disordered lattice can be modelled by a random walk 
in a random environment, and corresponding problems have recently attracted con- 
siderable attention (see e.g. Alexander et a1 1981, Derrida and Pomeau 1982, and 
references therein). 

Consider a particle whose motion on the one-dimensional lattice Z, starting at site 
n = 0 at time t = 0, is described by a continuous-time random walk with only nearest- 
neighbour transition rates W:. The probabilities P,,(r) of finding the particle at site 
n at time t L 0 then obey the master equation 

dP,,/dt = W:-lPn-l + W;+lP,,+l-(W: + W;)P,, 

Pn(0) = S ~ O *  (2) 

(1) 
with 

The two transition rates associated with the same bond, W: and Wi+l ,  are allowed 
to be correlated, but the pairs {W:, W,,,} are assumed to be independent random 
variables, equally distributed according to a probability density p ( w + ,  w - ) .  A number 
of interesting results have been derived (Bernasconi et a1 1980, Alexander et a1 1981, 
Bernasconi and Schneider 1981) for the case of random symmetric transition rates 
( W :  = W,,, ), and it is the purpose of this letter to investigate some aspects of the 
non-symmetric case. 

Similar models have been analysed for discrete-time random walks (Solomon 1975, 
Kesten et a1 1975, Sinai 1982, Derrida and Pomeau 1982). In these models, a particle 
at site n will after one time step be either at site n + 1 or at site n - 1, with probabilities 
a, and I-a,,, respectively. For the case that the a,  are independent, identically 
distributed random variables, a number of remarkable results have been obtained. 
In particular, it is possible that the mean displacement grows indefinitely, but slower 

0305-4470/82/120729 + 06$02.00 @ 1982 The Institute of Physics L729 



L730 Letter to the Editor 

than linearly in time. As one might expect, it will turn out that our continuous-time 
models lead to essentially the same results as their discrete-time counterparts. We 
shall, however, find some surprising additional effects which are not immediately 
apparent from the existing treatments of discrete-time systems. 

We now return to our continuous-time random walk described by equations (1) 
and (2), and our aim is to determine the long-time asymptotic behaviour of the average 
mean displacement, 

where (. , ,) denotes an ensemble average, i.e. an average with respect to the probability 
distribution of the random transition rates W:. As already specified after equation 
(2), we shall restrict our discussion to systems for which the pairs {W:, W,,,} are 
independent random variables, equally distributed according to a probability density 
p ( w + ,  w-). The two transition rates W: and Wnel, which are associated with the 
same bond (n ,  n + l ) ,  however, can be correlated. 

If the transition rates have fixed values, W' and W -  respectively, independent of 
n, one immediately derives the well known result 

(4) 

i.e. the mean displacement varies linearly with time, and U = W' - W -  can be identified 
as a drift velocity. 

In the case of random transition rates, our master equation can formally be solved 
by means of Laplace transformation. Taking equation (2) into account, the Laplace 
transform of equation (1) becomes 

( X ( t ) )  = ut = (W'-  w-)t, 

where 

The solution of equation ( 5 )  can be written in the form 

F . ~ ( z )  = ( Z  + X O  + Yo)-', 

where X,, and Y,  are infinite continued fractions recursively defined by 

n =0,  1 , 2 , ,  . . ,  w,' 
1 Wi+l  ' 

x, = 

I +  
z +Xn+1 
WI, 
w:,-1 ' Y, = II =o ,  1 , 2 , ,  , . . 
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The Laplace transform of the average mean displacement ( x ( t ) ) ,  finally, can be 
expressed as 

If the transition rates Wz are random variables, the problem thus becomes very 
complicated, and we cannot solve it in its full generality. In the following, we first 
discuss the results of a self-consistent eff ective-medium approximation (EMA), and 
then introduce an interesting special case for which we can determine the long-time 
asymptotic behaviour of (x ( t ) )  exactly. Details of the corresponding calculations will 
be reported in a more extended publication (Bernasconi and Schneider 1982). 

Systems described by a master equation of the type of equation (3, with symmetric 
transition rates (W: = W,,,), have frequently been analysed in terms of a self- 
consistent EMA (Alexander et a1 1981, Odagaki and Lax 1981, Webman 1981). This 
approach is easily generalised to the case of asymmetric transition rates (Stephen 
1981, Bernasconi and Schneider 1982), with an effective medium characterised by 
two z-dependent transition rates, WTff ( z )  and Wiff ( z ) ,  which are determined by two 
coupled self-consistency equations. Within the EMA, one thus has 

(13) (x'(2)) = 2- * [  w:ff (2)- w, ( z ) ]  = z-*u,ff(z), 
and it turns out that 

(14) 
w /W+))/U/W+) if (w-/w+)< 1, 

u e R ( o ) = { ( l - (  - ( I  -(w+/W-))/(l/w-) - if(w'/w-><I, 

where here (. . .) denotes the average over the joint probability density p(wc, w-) for 
W i  and W,,,. Asymptotically, ( x ( t ) )  is thus predicted to vary linearly with time, 

(X ( t ) )  == U e f f ( O ) t ,  t+m,  (15) 
if either (w-/w'> or (w'/w-) is smaller than one, and ueff(0) vanishes if one of these 
averages approaches 1. If, however, p(wc, w-) is such that 

(w-/w+)L 1 and (w+/w-)zl, (16) 
the EMA is not applicable, i.e. it does not lead to physically reasonable results for the 
long-time behaviour of ( x ( t ) ) .  We now introduce a model for which the situation 
described by equation (16) can be studied in some detail. Consider a probability 
density p (w +, w -) of the form 

(17) 

with A, U and U positive and 0 < p  < 1. This describes a one-dimensional model system 
in which 'diodes', { W:, W,+I} = {U, 0}, and 'two-way bonds', {W:, W i t l }  = {Au, U}, 
occur with probabilities p and 1 - p ,  respectively. It follows that 

and (18) 
and the interesting region, which cannot be described by the EMA, is thus given by 

For this model, the z + 0 asymptotic behaviour of (x'(z)) can be determined exactly 
(Bernasconi and Schneider 1982). One first shows that in the limit as z + 0 it is 
sufficient to consider configurations for which the bond ( -1 ,O)  is a 'diode'. This 

p(w+, w - ) = p S ( w + - ~ )  S(w-)+(l-p) G(w+-Av) S(W--U), 

( w -/w *) = (1 - p ) / A  ( w +/ w -> = a, 

A S l - p .  
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implies that all Y,, equation ( l l ) ,  are zero, so that equation (12) can be written as 

We further observe that the value of X n  only depends on N ,  - n, where (N+,  N +  + 1) 
is the closest ‘diode’ to the right of site n. For all sites n between two ‘diodes’, 
( N - ,  N -  + 1) and (N+,  N ,  + l ) ,  we can therefore introduce the notation 

CN+-n = X n / ( z  +Xn),  N..+ 1 S n  s N + ,  (20) 

and, using equation (1 0), it follows that 

CO = u / ( z  +U), (21) 

C k  = A u / [ z  +~( l+A-Ck-1) ] ,  k = 1,2 ,  . . . , N +  - N -  - 1, (22) 

The factors X m / ( z  + X , )  in equation (19) can therefore be calculated separately, and 
with the same recursion, for each segment between two ‘diodes’. This makes it possible 
to perform the average over all configurations explicitly, and one finally obtains 

( f (z))  z-’(S)/(l - ( R ) ) ,  (23) 
where 

and 

R, = CoCl . . . C,, 
s, = cn + CnCn-l + . . . + cncn- 1 . . . Co. 

(25) 

(26) 

The recursion defined by equations (21) and (22) can be solved, so that the z + 0 
behaviour of (2 ( 2 ) )  can be determined analytically. The long-time asymptotic 
behaviour of (x ( t ) )  then follows from general theorems about inverse Laplace trans- 
forms (Doetsch 1971). 

The corresponding calculations are rather lengthy (Bernasconi and Schneider 
1982), and we restrict ourselves to a summary and discussion of the long-time 
behaviour of the average mean displacement. We obtain that 

where 

a = -ln(l - p ) ,  P = -In A ,  v =(YIP.  
The function F is periodic with period 1, and explicitly given by 

m 
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where the f, are determined by 

with 

i cos TU sinh - sin ?rv cosh -- 
2 r 2 k  

P P 

For A > 1 - p  we can compare our exact result with that obtained from the 
self-consistent EMA. Evaluating v,*(O),  equation (14), for the p ( w + ,  w - )  defined in 
equation (17), we find that vef i (0)  = um. If the parameters p and A are such that an 
asymptotic drift velocity exists, it is thus correctly reproduced by the EMA. 

For A < 1 - p ,  the asymptotic behaviour of (x(t)) is very remarkable. The average 
mean displacement not only increases slower than linearly in time, (x (t)) - t ”, but 
exhibits superimposed, non-decaying oscillations as a function of In t. The period of 
these oscillations, P = -In A, as well as their amplitude, increases with decreasing A ,  
and we note that A characterises the asymmetry of the ‘two-way bonds’. As (x(t)) 
represents an average over all possible configurations of ‘diodes’ and ‘two-way bonds’, 
the persistence of these oscillations is rather surprising. It is possible, however, to 
give a simple intuitive interpretation of their origin (see below). 

To perform numerical simulations, it is convenient to use the following discrete- 
time analogue of our ‘diode model’. If xt = n denotes the position of the particle at 
time t, one has x,+’ = n + 1 with probability a,, and x,+’ = n - 1 with probability 1 -a,, 
and 

with probability p ,  
9 with probability 1 - p .  

-1 
a n  

(33) 

This model has been analysed by Solomon (1975), and his results imply that the 
asymptotic behaviour of (x,) is qualitatively the same as in our continuous-time model, 
equation (27). In particular, it turns out that the expressions for the exponent Y and 
for the oscillation period p coincide with those given in equation (29), although the 
oscillatory behaviour of (x,) is only obtained implicitly. 

In our simulations we have chosen p = 0.7 and A = 0.09 (implying U =+), and 
corresponding results are displayed in figure 1. They represent an average over 10 000 
Monte Carlo samples and exhibit the oscillatory behaviour of ln(t-”(x,)) against In t 
very clearly. Even-odd effects are important for small (integer) t values, but the 
asymptotic oscillations with period P = -In A develop very rapidly, and at least qualita- 
tively they compare very well with our continuous-time predictions, equations (27 ) -  
(32), which we have evaluated with U = 1 and U = (1 +A)- ’ .  

It can be demonstrated that the oscillatory behaviour of the average mean displace- 
ment is connected with the discrete nature of the slowing-down process in our models. 
Consider the average time tk it takes a particle to go beyond the first k-tuple of 
consecutive ‘two-way sites’ (or ‘two-way bonds’) it encounters on its path. This can 
be estimated as follows (Bernasconi and Schneider 1982): 
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Figure 1. Average mean displacement ( x , )  for the model described by equation (33), with 
p = 0.7 and A = 0.09. The numerical results represent an average over 10 000 Monte 
Carlo samples, and the broken curve is the continuous-time result for the asymptotic 
behaviour of ( x ( t ) )  (equations (27)-(32), evaluated for p = 0.7, A =0.09, U = 1, and 
U = (1 +A)-'). The arrows indicate simple estimates for the locations tk of the first minima 
(equation (34); k = 1 , .  . . , 4 ) .  

where 

is the average waiting time at an m-tuple of consecutive 'two-way sites', and where 
the average separation of two m-tuples has been approximated by (1 - p ) - " .  For 
A < 1 - p ,  t k  becomes dominated by Tk, so that we may expect ln(t-"(x,)) to exhibit 
minima at t = t k .  This intuitive argument is rather accurately confirmed by the numeri- 
cal simulations in figure 1, and we note that (In tk+' -In tk)+ln  A- '  for k +CO, in 
agreement with the analytic predictions for the asymptotic oscillation period. 

The above arguments, finally, indicate that the oscillations are not an exclusive 
consequence of our 'diode models'. Similar effects should also be observed in systems 
with a more general transition rate distribution, provided that this is (a) discrete and 
(b) such that (x(t)> increases slower than linearly in time. In this connection we note 
that the saddlepoint-type approach of Derrida and Pomeau (1982) would be insensitive 
to such superimposed oscillations. 
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